Skip to content

AI Models

List

Note:

  • Normal users have user level 1.
  • Temporary IP-based users have user level 0.
Name Type Trained Date Required Minimum User Level
baseline 4-Player 2023-12-17 (removed)
aggressive 4-Player 2024-01-02 (removed)
defensive 4-Player 2024-02-14 (removed)
experimental-v0 4-Player 2024-04-19 (removed)
experimental-v1 4-Player 2024-04-13 (removed)
experimental-v2 4-Player 2024-04-26 1
canary-v1 4-Player 2024-06-09 1
finetuned-o1 4-Player 2024-11-13 (removed)
finetuned-a1 4-Player 2024-11-15 2
finetuned-b1 4-Player 2024-11-18 2
finetuned-d1 4-Player 2024-11-22 2
finetuned-r1 4-Player 2024-12-01 2
finetuned-r2 4-Player 2024-12-02 2
finetuned-r3 4-Player 2024-12-02 2
finetuned-s1 4-Player 2025-03-16 2
finetuned-s2 4-Player 2025-03-18 2
3p-zero 3-Player 2025-01-20 (removed)
3p-alpha-1 3-Player 2025-01-30 (removed)
3p-alpha-2 3-Player 2025-02-02 (removed)
3p-beta-1 3-Player 2025-02-13 (removed)
3p-beta-2 3-Player 2025-03-01 1
3p-beta-3 3-Player 2025-03-03 2
3p-beta-4 3-Player 2025-03-04 2
3p-cross-1 3-Player 2025-03-02 2
3p-cross-2 3-Player 2025-03-22 2
3p-cross-3 3-Player 2025-03-22 2
medium 4-Player 2024-12-20 1
mini 4-Player 2024-12-23 0

Specs

Note:

  • All models have proprietary architectures except those with the Mortal architecture.
  • Less training data rows do not necessarily mean that the models are weaker; instead, they imply that the training methods are improved or special.
Name Architecture Training Data Rows Inference Cost
baseline Mortal v4 750 million 0.06
aggressive Mortal v4 1.25 billion 0.06
defensive Mortal v4 1.10 billion 0.06
experimental-v0 Mortal v4 (modified) 500 million 0.06
experimental-v1 OG O 1.00 billion 0.05
experimental-v2 OG A 700 million 0.05
canary-v1 RR v0 250 million 0.05
finetuned-o1 RF v0 5.25 billion 0.05
finetuned-a1 RF v1 185 million 0.05
finetuned-b1 RF v1 370 million 0.05
finetuned-d1 RF v1 615 million 0.05
finetuned-r1 RF v2 490 million 0.05
finetuned-r2 RF v2 590 million 0.05
finetuned-r3 RF v2 550 million 0.05
finetuned-s1 RF v4 1.15 billion 0.05
finetuned-s2 RF v4 1.35 billion 0.05
3p-zero RF3 v0 2.05 billion 0.05
3p-alpha-1 RF3 v3 615 million 0.05
3p-alpha-2 RF3 v3 675 million 0.05
3p-beta-1 RF3 v4 245 million 0.05
3p-beta-2 RF3 v4 575 million 0.05
3p-beta-3 RF3 v4 860 million 0.05
3p-beta-4 RF3 v4 940 million 0.05
3p-cross-1 RF3 v4 735 million 0.05
3p-cross-2 RF3 v4 980 million 0.05
3p-cross-3 RF3 v4 1.00 billion 0.05
medium Lite I v1 160 million 0.03
mini SuperLite I v1 185 million 0.01

Performance

Note:

  • The tests below are designed the same way as those of Mortal; i.e. 1 challenger model VS 3 champion models (or 2 champion models for 3-player tests), where each randomly generated hanchan is repeated 4 times (or 3 times for 3-player models) with all combinations of player IDs to reduce factors of luck.
  • All statistics are in the perspectives of the challenger models.
  • Average pt is calculated by the distributions \([90,45,0,-135]\) for 4-player models and \([135,0,-135]\) for 3-player models.
  • A challenger model having better results against a specific champion model does not necessarily mean that the challenger model is stronger; it may be because the challenger model is better at exploiting the champion model, but the challenger model may be exploited in other ways as a cost. Having good results against multiple (ideally independent) models is desired, as it means that such models are robust against exploitations generally.
Challenger Champion Hanchan Games 1st Rate 2nd Rate 3rd Rate 4th Rate Average Rank Average Pt
canary-v1 aggressive 100,000 23.8% 25.6% 27.5% 23.1% 2.498 +1.817
canary-v1 defensive 100,000 25.5% 25.6% 24.9% 24.0% 2.476 +1.966
canary-v1 experimental-v2 100,000 24.0% 25.3% 27.5% 23.2% 2.498 +1.734
canary-v1 akagi-v4-20240110-best 100,000 26.5% 26.4% 24.6% 22.5% 2.431 +5.385
canary-v1 akagi-v4-20240308-best 200,000 25.0% 26.4% 25.1% 23.5% 2.471 +2.651
finetuned-a1 akagi-v4-20240308-best 100,000 25.5% 26.2% 25.1% 23.2% 2.461 +3.335
finetuned-a1 canary-v1 100,000 25.4% 24.9% 25.0% 24.7% 2.489 +0.798
finetuned-a1 experimental-v2 100,000 24.1% 25.5% 27.4% 23.0% 2.492 +2.142
finetuned-b1 akagi-v4-20240308-best 100,000 25.3% 26.2% 25.4% 23.1% 2.464 +3.358
finetuned-b1 canary-v1 100,000 25.3% 24.9% 25.5% 24.3% 2.488 +1.115
finetuned-b1 experimental-v2 100,000 24.1% 25.6% 27.7% 22.6% 2.488 +2.723
finetuned-d1 akagi-v4-20240308-best 100,000 25.1% 26.4% 25.6% 22.9% 2.463 +3.602
finetuned-d1 canary-v1 100,000 25.0% 25.3% 25.6% 24.1% 2.488 +1.332
finetuned-d1 experimental-v2 100,000 23.8% 25.8% 27.9% 22.5% 2.492 +2.604
finetuned-r1 akagi-v4-20240308-best 100,000 25.7% 25.8% 25.2% 23.3% 2.460 +3.348
finetuned-r1 canary-v1 100,000 25.7% 24.8% 24.9% 24.6% 2.484 +1.087
finetuned-r1 experimental-v2 100,000 24.4% 25.3% 27.4% 22.9% 2.487 +2.447
finetuned-r2 akagi-v4-20240308-best 100,000 25.5% 26.1% 25.3% 23.1% 2.460 +3.465
finetuned-r2 canary-v1 100,000 25.3% 25.1% 25.0% 24.6% 2.489 +0.896
finetuned-r2 experimental-v2 100,000 23.9% 25.8% 27.6% 22.7% 2.492 +2.386
finetuned-r3 akagi-v4-20240308-best 100,000 25.4% 26.4% 25.1% 23.1% 2.458 +3.638
finetuned-r3 canary-v1 100,000 25.6% 25.0% 25.1% 24.3% 2.482 +1.409
finetuned-r3 experimental-v2 100,000 24.3% 25.5% 27.5% 22.7% 2.487 +2.644
finetuned-s1 finetuned-r3 160,000 25.0% 25.0% 25.0% 25.0% 2.500 +0.046
finetuned-s1 finetuned-b1 160,000 25.4% 24.9% 24.7% 25.0% 2.494 +0.222
finetuned-s2 finetuned-r3 160,000 25.0% 25.1% 24.9% 25.0% 2.498 +0.112
finetuned-s2 finetuned-b1 160,000 25.4% 24.9% 24.6% 25.1% 2.495 +0.119
3p-alpha-2 3p-zero 300,000 34.5% 34.4% 31.1% N/A 1.967 +4.475
3p-beta-1 3p-zero 300,000 34.6% 33.9% 31.5% N/A 1.970 +4.050
3p-beta-1 3p-alpha-2 300,000 33.4% 33.0% 33.6% N/A 2.002 -0.293
3p-beta-2 3p-beta-1 300,000 33.5% 33.2% 33.3% N/A 1.998 +0.300
3p-beta-2 3p-alpha-2 300,000 33.6% 32.9% 33.5% N/A 1.999 +0.128
3p-beta-3 3p-beta-1 300,000 33.6% 33.3% 33.1% N/A 1.995 +0.655
3p-beta-3 3p-alpha-2 300,000 33.7% 32.8% 33.5% N/A 1.998 +0.292
3p-beta-4 3p-beta-1 300,000 33.7% 33.2% 33.1% N/A 1.994 +0.868
3p-beta-4 3p-alpha-2 300,000 33.7% 32.7% 33.6% N/A 1.998 +0.243
3p-cross-1 3p-beta-1 300,000 33.6% 33.2% 33.2% N/A 1.996 +0.522
3p-cross-1 3p-alpha-2 300,000 33.8% 32.9% 33.3% N/A 1.995 +0.661
3p-cross-2 3p-cross-1 300,000 33.6% 33.0% 33.4% N/A 1.998 +0.277
3p-cross-2 3p-beta-4 300,000 33.4% 33.3% 33.3% N/A 1.998 +0.220
3p-cross-2 3p-beta-2 300,000 33.6% 33.0% 33.4% N/A 1.999 +0.190
3p-cross-2 3p-beta-1 300,000 33.7% 33.1% 33.2% N/A 1.994 +0.747
3p-cross-3 3p-cross-1 300,000 33.6% 33.2% 33.2% N/A 1.996 +0.515
3p-cross-3 3p-beta-4 300,000 33.5% 33.1% 33.4% N/A 1.999 +0.161
3p-cross-3 3p-beta-2 300,000 33.6% 33.2% 33.2% N/A 1.995 +0.638
3p-cross-3 3p-beta-1 300,000 33.8% 33.0% 33.2% N/A 1.994 +0.779